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Wave-number locking in spatially forced pattern-forming systems
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Abstract – We use the Swift-Hohenberg model and normal-form equations to study wave-number
locking in two-dimensional systems as a result of one-dimensional spatially periodic weak forcing.
The freedom of the system to respond in a direction transverse to the forcing leads to wave-
number locking in a wide range of forcing wave-numbers, even for weak forcing, unlike the locking
in a set of narrow Arnold tongues in one-dimensional systems. Multi-stability ranges of stripe,
rectangular, and oblique patterns produce a variety of resonant patterns. The results shed new
light on rehabilitation practices of banded vegetation in drylands.
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Frequency locking phenomena in temporally forced
oscillators are well understood; a forced oscillator can
adjust its frequency of oscillation to a rational fraction
of the forcing frequency [1] if the mismatch between the
two frequencies is small enough. Resonant oscillations of
this kind occur in a discontinuous set of intervals (Arnold
tongues) along the forcing frequency axis that obeys the
Farey hierarchy [2]. Spatially extended oscillatory systems
show similar frequency locking behaviors [3–8], but the
appearance of a band of long-wavelength modes beyond
the oscillatory instability allows for additional instances
of frequency locking due to dispersion effects. Resonant
standing waves outside the resonance boundaries of
uniform oscillations is one example [9–12].
The spatial counterpart of frequency locking, wave-
number locking, is less well understood. Although much
work has been devoted to pattern-forming systems that
are subjected to spatially periodic forcing [13–16], includ-
ing traveling stripe forcing [17], some basic questions
of wave-number locking remained largely unexplored. In
the simplest setting, wave-number locking can occur in
spatially extended systems that go through stationary
nonuniform instabilities [18] to stripe patterns and are
subjected to time-independent one-dimensional spatially
periodic forcing. Wave-number locking in such systems
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differs from frequency locking in that spatially forced
extended systems have the freedom to respond in two and
three spatial dimensions, even if the spatial forcing is one-
dimensional, while locking in the time domain is inherently
one-dimensional. This basic and significant difference has
received little attention [19–21].
In this letter we analyze wave-number locking phenom-

ena associated with a two-dimensional response to a
one-dimensional forcing. We are interested in universal
aspects of wave-number locking and therefore base our
study on normal-form equations. We derive these equa-
tions using a periodically forced Swift-Hohenberg (SH)
equation, which helps us motivate the problem and test
our analysis using direct numerical solutions. The specific
equation we consider is

ut = εu−
(∇2+ k20)2 u−u3+(α+ γu) cos (kfx). (1)

In this equation ε is the distance from the instability point
of the unforced zero state to a stationary pattern with a
wave-number k0 ∼O(1), kf is the forcing wave-number,
γ is the intensity of multiplicative forcing and α is the
intensity of additive forcing.
In the absence of forcing (α= γ = 0) the unstable zero

state u= 0 evolves towards a stripe pattern with wave-
number k0, the pattern that minimizes the Lyapunov
function of the SH equation (see fig. 1(a)). Applying
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Fig. 1: One- and two-dimensional resonant responses to one-
dimensional periodic forcing in the forced SH equation (1).
The left frames show the pattern amplitude u(x, y) and the
right frames show the maximum in the power spectra for the
spatial Fourier transform of u. The circle indicates the ring,
|k|= k0, of fastest growing wave-numbers. (a) The unforced
system develops a periodic pattern with wave-number k= k0.
(b) With additive forcing (α= 0.05, γ = 0) near the 1 : 1
resonance (kf = 1.2k0) a periodic stripe pattern forms in exact
resonance with the forcing k= kf . (c) Multiplicative forcing
(α= 0.0, γ = 0.05) at the same wave-number (kf = 1.2k0)
produces a two-dimensional resonant oblique pattern with
kx = kf/2 in 2 : 1 resonance with the forcing. (d) Higher
multiplicative forcing (γ = 0.15) does not induce stripes
but instead produces 2 : 1 rectangular patterns. Parameters:
ε= 0.1, k0 = 1 on a periodic domain of x, y= [0, 20π].

near-resonant additive forcing (kf ≈ k0, γ = 0, α> 0)
leads to wave-number locking analogous to frequency
locking in forced oscillators; the unstable zero state
evolves towards a stripe pattern that adjusts its wave-
number k to resonate with the forcing wave-number,
k= kf (fig. 1(b)). However, applying near-resonant
multiplicative forcing (kf ≈ k0, γ > 0, α= 0) leads to
a two-dimensional response in the form of an oblique

pattern (fig. 1(c)). The pattern is resonant, because the
wave vector component kx in the x-direction is locked
to the forcing wave-number, but the locking ratio is 2 : 1,
that is, kx = kf/2 despite the fact that kf ≈ k0. Increasing
the forcing intensity γ does not help in recovering the
stripe-type pattern of the unforced system, but instead
leads to 2 : 1 resonant rectangular patterns (fig. 1(d)).
To understand the two-dimensional resonant patterns

shown in figs. 1(c) and (d), and to find the parameter
ranges for the resonances, we study eq. (1) with multiplica-
tive forcing (γ > 0, α= 0) by deriving normal-form equa-
tions for the primary instability of the zero state, u= 0.
Assuming ε and γ are small, we approximate a solution of
eq. (1) in the form [19]

u∼= aei(kxx+kyy)+ bei(kxx−kyy)+c.c., (2)

where kx = k0+ ν = kf/2, ky =
√−2k0ν− ν2 and

ν ∼O(1) is a detuning parameter. With this choice
k=
√
k2x+ k

2
y = k0, the optimal wave-number that mini-

mizes the Lyapunov function of the Swift-Hohenberg
equation. Using the method of multiple scales, assuming
a and b vary weakly in space and time, we derive the
following equations for the amplitudes a and b [21]:

at = εa+4(kx∂x+ ky∂y)
2a− 3(|a|2+2|b|2)a+ γ

2
b∗,

bt = εb+4(kx∂x− ky∂y)2b− 3(|b|2+2|a|2)b+ γ
2
a∗.

(3)

Since eq. (1) is invariant with respect to the transforma-
tion kf →−kf , we can restrict our analysis to kf > 0, or
to ν values satisfying ν >−k0.
The zero state, u= 0, of eq. (1) corresponds to the

zero solution a= b= 0 of eqs. (3). A linear stability
analysis of this solution shows that it becomes unstable
to uniform perturbations as ε exceeds εc =−γ/2. Beyond
this threshold resonant rectangular patterns appear, as we
will now show.
The condition for resonant solutions of the form (2) is

that the amplitudes a and b are independent of x [12].
The simplest solutions of this kind are constant solutions
of eqs. (3). Writing the amplitudes in polar forms, a=
ρa exp (iα) and b= ρb exp (iβ), we find the following equiv-
alent dynamic equations for space-independent solutions:

ρat = ερa− 3(ρ2a+2ρ2b)ρa+
γ

2
ρb cos(ϕ),

ρbt = ερb− 3(ρ2b +2ρ2a)ρb+
γ

2
ρa cos(ϕ),

(4)

and

ϕt =−γ
2

(
ρb

ρa
+
ρa

ρb

)
sin(ϕ), (5)

where ϕ= α+β. Constant solutions of eqs. (4) and (5)
give the following solutions to eq. (4):

a0 = ρ0 exp (iα), b0 = ρ0 exp (−iα), (6)
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where

ρ0 =
1

3

√
ε+
γ

2
, (7)

and α is an arbitrary constant associated with the contin-
uous symmetry of translations in the y-direction. These
solutions describe resonant rectangular patterns. Their
existence range is given by ε >−γ/2 and −2k0 < ν < 0 (in
order for ky to be real). Linear stability analysis of these
solutions yields the stability condition, −γ/2< ε< γ. The
same result is obtained by studying the linear stability
of these solutions to nonuniform perturbations using
eqs. (3). Note that the stability range of rectangular-
pattern solutions reduces to zero in the limit of zero
forcing, although the solutions continue to exist (provided
ε > 0). Equations (3), without the spatial derivative terms,
have been derived before in the context of time-periodic
forcing of spatially extended oscillatory systems [9]. The
rectangular and oblique pattern solutions correspond in
that context to standing and traveling wave solutions.
A significant outcome of this analysis is that rectangular

patterns are resonant over a wide and continuous detuning
range |ν| ∼O(1), despite the fact that the forcing intensity
γ can be diminishingly small. This is unlike the Arnold-
tongues picture of locking phenomena, where the locking
range is small and scales with the forcing intensity. It
results from the freedom of the system to build a wave
vector component in the y-direction, while keeping the
x-component locked to half of the forcing wave-number
kx = kf/2. This finding can be significant for applications
where periodic forcing is used as a means of controlling
the wave-number of a pattern; adding a second spatial
dimension will dramatically increase the range over which
the wave-number can be controlled.
What type of pattern solutions appear beyond the insta-

bility threshold ε= γ of rectangular patterns? Looking for
stationary solutions of eqs. (4) and (5) in the range ε > γ,
we find two new solution families that bifurcate from the
rectangular-pattern solutions:

a± = ρ± exp (iα), b∓ = ρ∓ exp (−iα), (8)

where

ρ± =

√
ε±√ε2− γ2

6
, (9)

and α is an arbitrary constant. These solutions break the
symmetry, a→ b, b→ a, of eqs. (4), as the bifurcation
diagram in fig. 2 shows, and give rise to oblique patterns.
They are linearly stable (to uniform and nonuniform
perturbations) in the range ε > γ, and therefore prevail
when the forcing is weak (see fig. 1(c)). Like the rectan-
gular patterns, the oblique patterns are also resonant,
because the wave vector component in the forcing direc-
tion x is exactly half the forcing wave-number, kx = kf/2.
The rectangular and oblique patterns cease to exist at
ν = 0. This threshold corresponds to 2 : 1 resonant stripe
patterns with wave-numbers k0 = kf/2. The resonance

−0.1 0.0 0.1 0.2 0.3
ε

0.0

0.1

0.2

0.3

ρ rectangular

oblique

−γ/2 γ

Fig. 2: Bifurcation diagram showing the appearance of rectan-
gular patterns (a0, b0) at ε=−γ/2 (see eqs. (6) and (7)), and
their destabilization to oblique patterns (a+, b−) and (a−, b+)
at ε= γ (see eqs. (8) and (9)).

range of these stripe patterns is expected to widen as γ
increases and also to be affected by Eckhaus and zigzag
instabilities. To study this range, we approximate stripe
solutions of eq. (1) (with γ > 0 and α= 0) by the form

u(x, y, t)∼=A(x, y, t) exp
(
i
kf

2
x

)
+c.c., (10)

where “c.c.” stands for the complex conjugate, and derive
an equation for the amplitude A, assuming ε, γ and ν are
all small. The resulting amplitude equation is

At = εA−
(
2ik0∂x− 2k0ν+ ∂2y

)2
A− 3|A|2A+ γ

2
A∗. (11)

The stationary homogeneous solutions of this equa-
tion are given by A± =± 1√

3

√
ε− (2k0ν)2+ γ/2 and

A±i =± i√
3

√
ε− (2k0ν)2− γ/2. The former, A±, are

the first to appear (at ε=−γ/2+4k20ν2) as ε is
increased, and are linearly stable to uniform pertur-
bations. The latter, A±i, are always unstable and
will not be discussed any further. To find the stabil-
ity range of the solutions A±, we study their linear
stability to nonuniform perturbations of the form
δA= a+ exp[i(Qxx+Qyy)]+a

∗− exp [−i(Qxx+Qyy)]. This
gives the following thresholds for the Eckhaus (Qy = 0)
and zigzag (Qx = 0) instabilities:

Eckhaus : ε = 12k20ν
2− 4k0|ν|√γ, |ν|>

√
γ

4k0
,

Zigzag : ε = 6k20ν
2− γ/2, or ν =−

√
γ

2k0
.

These thresholds define the 2 : 1 resonance ranges of stable
stripe solutions (k= kf/2). In the limit γ = 0 these results
coincide with the known Eckhaus and zigzag thresholds
for the unforced SH equation [18]. The forcing extends the
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Fig. 3: A narrow resonance range of 2 : 1 stripe patterns
(|ν| ∼O(√ε)) vs. a wide resonance range of 2 : 1 rectangu-
lar and oblique patterns (|ν| ∼O(1)) in the SH model with
multiplicative forcing (1). Top: phase diagram in the ν-ε para-
meter plane showing the regions of stable resonant patterns.
Stripes are stable in the shaded region. Stripes and rectan-
gular or oblique patterns coexist for ν < 0 and within the
stripe stability region. Bottom: the patterns in (a)–(l) are
numerical solutions of eq. (1) with the parameters indicated
by the corresponding letter in the phase diagram. Patterns
(c), (g), (k) coexist with stable stripe patterns (not shown)
at the same parameters. Parameters: k0 = 1, α= 0, γ = 0.1,
ν = [−0.777,−0.2,−0.05, 0.1], ε= [0.05, 0.12, 0.3].

range of stable stripe solutions to negative ε values, down
to the value ε=−γ/2 where the rectangular solutions
appear. It also extends the range of stable stripes to
negative ν values. This implies the existence of bistability
ranges of stripe and rectangular patterns for ε < γ, and
of stripe and oblique patterns for ε > γ.
The regimes of all resonant responses discussed so far

are displayed in the phase diagram shown in fig. 3. Also
shown in this figure are typical forms of stripe, rectangular
and oblique patterns, and how they are affected by the
detuning ν. Both rectangular and oblique patterns change
from stripe patterns along the x-direction, in the limit
ν→ 0, to stripe patterns along the y-direction, in the
limit ν→−k0. Accordingly, the pattern’s wave vector
component in the x-direction is continuously controllable
by the forcing from kx = k0 (ν = 0) to kx = 0 (ν =−k0).

a b c

Fig. 4: Resonant mixed patterns with stationary domain walls
in multi-stability ranges of pattern states. (a) Phase-shifted
stripe patterns separated by a transverse Ising front (ε= 0.05).
(b) Mixed stripe and rectangular patterns (ε= 0.05).
(c) Mixed stripes and oblique patterns of two different orien-
tations (ε= 0.15). Other parameters: k0 = 1, α= 0, γ = 0.1,
ν =−0.1.

At ν =−k0/4 the rectangular patterns become square
patterns and the oblique stripes are exactly diagonal.
In the range ε� γ the oblique patterns become oblique
stripes.
The variety of resonant patterns that can appear in the

range ν < 0 is wider than that shown in fig. 3 due to bista-
bility ranges of stripes and rectangular patterns for ε < γ,
and tristability ranges of stripes and the two symmetric
oblique patterns for ε > γ. In the range ε < γ asymptotic
spatial mixtures of stripe and rectangular patterns are
found whenever the domain walls that separate the two
patterns are perpendicular to the stripe direction. Such
domain walls are close approximations of stationary trans-
verse Ising fronts [22]. Domain walls aligned parallel to the
stripes propagate to reduce and eliminate stripe domains,
leaving an asymptotic rectangular pattern. Fronts may
also form between stripes and oblique patterns but in that
case the fronts may be either aligned perpendicular or
parallel to the stripes. Figure 4 shows examples of reso-
nant patterns consisting of mixtures of stripe, rectangular,
and oblique patterns.
The results predicted here can be tested by controlled

experiments in a Rayleigh-Bénard convection system
which is spatially forced by periodic modulation of the
bottom plate [23]. A possible ecological application for
these results is the rehabilitation of banded vegetation in
arid and semi-arid regions. Vegetation on hill slopes often
self-organizes to form stripe patterns oriented perpen-
dicular to the slope direction [24,25]. Recovery practices
of degraded vegetation are based on water-harvesting
methods such as parallel contour ditches that accumulate
runoff and along which the vegetation is planted. The
contour ditches increase the biomass growth rate because
of the higher soil-water densities they induce [26,27],
and therefore can be regarded as multiplicative periodic
forcing. The results shown in fig. 1(c) and (d) then suggest
that this practice may lead to two-dimensional vegetation
patterns rather than vegetation stripes, and consequently
to lower bio-productivity (2 : 1 resonance instead of the
intended 1 : 1 resonance).

10005-p4



Wave-number locking

∗ ∗ ∗
The support of the James S. McDonnell Foundation is

gratefully acknowledged. Part of this work was funded
by the Department of Energy at Los Alamos National
Laboratory under contract DE-AC52-06NA25396, and the
DOE Office of Science Advanced Computing Research
(ASCR) program in Applied Mathematical Sciences.

REFERENCES

[1] Arnold V. I., Geometrical Methods in the Theory of
Ordinary Differential Equations (Springer-Verlag, New
York) 1983.

[2] Hao B.-L., Elementary Symbolic Dynamics and Chaos in
Dissipative Systems (World Scientific, Singapore) 1989.

[3] Coullet P. and Emilsson K., Physica D, 61 (1992) 119.
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